locatorlasas.blogg.se

Tubedigger vocal drone
Tubedigger vocal drone








That's why our study really has the potential to advance the field."Ībout the research field Neuromorphic computing is an AI-related field attempting to imitate the brain's neural networks. "The more energy-efficiently that cognitive calculations can be performed, the more applications become possible. He notes self-driving cars and drones as other examples of where more energy-efficient calculations could drive developments. If the calculations could instead be performed locally, on the actual phone, they could be done faster and easier without a need to connect to servers." Today, all processing is done by servers since the calculations require too much energy for the small size of a phone. An example is digital assistants like Siri or Google. "More energy-efficient calculations could lead to new functionality in mobile phones. This can be of particular importance in smaller applications like mobile phones. He feels that it is a huge advantage that the research team has successfully produced the components in an extremely small footprint: hundreds of components fit into an area equivalent to a single bacterium. These components work more like the brain's energy-efficient neural networks, allowing them to become important building blocks in future, more brain-like computers."Īccording to Johan Åkerman, the discovery will enable faster, easier to use and less energy consuming technologies in many areas. "This is an important breakthrough because we show that it is possible to combine a memory function with a calculating function in the same component. Integrating the two is a major advancement by the researchers. This makes them comparable to memory cells.

tubedigger vocal drone

Memristors are programable resistors that can also perform calculations and that have integrated memory. Åkerman describes oscillators as oscillating circuits that can perform calculations and that are comparable to human nerve cells. In the study, now published in the highly ranked journal Nature Materials, the researchers succeeded for the first time in linking the two main tools for advanced calculations: oscillator networks and memristors. Working with a research team at Tohoko University, Åkerman led a study that has now taken an important step forward in achieving this goal. Cognitive tasks, like image and voice recognition, require significant computer power, and mobile applications, in particular, like mobile phones, drones and satellites, require energy efficient solutions," says Johan Åkerman, professor of applied spintronics at the University of Gothenburg.

tubedigger vocal drone

"Finding new ways of performing calculations that resemble the brain's energy-efficient processes has been a major goal of research for decades.

tubedigger vocal drone

At the same time, the human brain is still unmatched in its ability to perform tasks effectively and energy efficiently. In recent years, computers have been able to tackle advanced cognitive tasks, like language and image recognition or displaying superhuman chess skills, thanks in large part to artificial intelligence (AI).










Tubedigger vocal drone